
Proceedings of the National Conference on Emerging Computer Applications (NCECA)-2022 1
Vol.4, Issue.1

269

DOI: 10.5281/zenodo.6369622
ISBN: 978-93-5607-317-3 @2022 MCA, Amal Jyothi College of Engineering KanjiraKottayamppally,

 TEXT SUMMARIZATION USING THE TEXTRANK

ALGORITHM

Lince Salu Varghese
Department of Computer Applications
Amal Jyothi College of Engineering,

Koovapally
Kottayam, Kerala.

lincesaluvarghesre2022@mca.ajce.in

 Mr. Rony Tom

Asst. Professor in Computer
Applications

Amal Jyothi College of Engineering,
Koovapally

Kottayam, Kerala.
ronytom@amaljyothi.ac.in

Abstract— Automatic text summarization is a technique for

producing a succinct and accurate summary. The machine

learning algorithm may be trained to understand texts and

identify the areas that contain key facts and information before

constructing the required summary phrases. We are using the

text rank-based Automatic Text Summarization in this study

work to create quality summaries and keywords, which are

essential for text summarization. The suggested summarizing

system's performance is evaluated.

Keywords—Automatic Text Summarization, TextRank

Algorithm, PageRank Algorithm

I.INTRODUCTION

 Text Summarization is one of those Natural Language
Processing (NLP) technologies that will undoubtedly have a
significant impact on our daily lives. One of the most difficult
and fascinating tasks in Natural Language Processing is
automatic text summarization. It’s a method for extracting a
brief and meaningful summary of text from a variety of
sources, including books, news stories, blog posts, research
papers, emails, and tweets. The availability of vast amount of
textual data has sparked a surge in demand for automatic text
summarizing systems. In this article text summarization is
discussed and how to use the TextRank algorithm and how to
put it into practice in python.

II.APPROACHES TO TEXT SUMMARIZATION

 Automatic text summarization has been a source of
fascination since the 1950s. "The automated production of
literary abstracts," a research paper by Hans Peter Luhn
published in the late 1950s, used factors like word frequency
to pick keywords from the text for summarising.

 Another notable study, conducted by Harold P
Edmundson in the late 1960s, extracted relevant sentences for
text summary using approaches such as the existence of cue
words, terms from the title occurring in the text, and sentence
location. Many important and intriguing works on the topic
of automatic text summarization have been published since
then.

The two most common types of text summary are
extractive and abstractive summarization.

Extractive Summarization: This approach works by
extracting many components from a text, such as phrases and
sentences, then stacking them together to generate a
summary. As a result, finding the proper phrases for summary
is critical in an extraction approach.

To create a completely new summary, abstractive
summarization employs advanced natural language
processing algorithms. It's possible that some of the details in
this summary aren't included in the original text. This study
will concentrate on the technique of extractive
summarization.

III.PAGERANK ALGORITHM

The PageRank algorithm provides a probability
distribution that is used to predict whether a user will wind
up on a given website after clicking on random links. Any
number of documents can be used to compute PageRank. At
the outset of the computational approach, some research
articles assume that the distribution is evenly distributed
throughout all documents in the collection. To update
predicted PageRank values to more closely approximate the
theoretical real value, the PageRank calculations require
multiple runs over the collection, referred to as "iterations."

Assume a four-page document containing the letters A, B,
C, and D on each page. Links between pages are disregarded,
as are outbound links from a single page to another single
page. For all pages, PageRank is set to the same value.
Because the entire number of pages on the web at the time
was equal to the sum of PageRank across all pages in the
original version of PageRank, in this case, each page would
start with a value of one. The rest of this section, as well as
later versions of PageRank, assumes that each page has a
probability distribution between and, with 0.25 as the
beginning value.

On the next cycle, the PageRank sent from a specific page
to the targets of its outbound links is split evenly across all
outbound connections. If the system’s only connections to A
were from pages B, C, and D each link would transmit 0.25
PageRank to A on the following iteration, for a total of 0.75.

 PR(A) = PR(B) + PR(C) +PR(D).

Consider what would happen if page B was linked to
pages C and A, page C to page A, and page D to all three
sites. As a consequence, on the first repeat, page B would
communicate half of its current value, or 0.125 to page A, and
the other half, or 0.125, to page C. Because it had three
outbound links, Page C's whole current value, 0.25, would be
transferred to A's sole existing value, or roughly 0.083. At the
end of this cycle, Page A will have a PageRank of around
0.458, and the page it connects to, A. D, will transmit one-
third of its PageRank.

 PR(A) = PR(B)/2 + PR(C)/1 +PR(D)/3

Proceedings of the National Conference on Emerging Computer Applications (NCECA)-2022 1
Vol.4, Issue.1

270

DOI: 10.5281/zenodo.6369622
ISBN: 978-93-5607-317-3 @2022 MCA, Amal Jyothi College of Engineering KanjiraKottayamppally,

To put it another way, the PageRank of an outgoing link is
capable the PageRank score of the document divided by the
quantity of outward-bound links L ()

 PR(A) = PR(B)/L(B) + PR(C)/L(C) + PR(D)/L(D)

1.

IV.TEXTRANK ALGORITHM

Instead of pages, we employ phrases in the TextRank
algorithm. The chance of a web page change is determined
by the similarity of the two texts. The similarity scores are
kept in a square matrix that resembles PageRank's.

TextRank is an unsupervised extractive text summarising
approach. The flow of the TextRank algorithm is :

 Fig 1: Flow of TextRank Algorithm

The first step would be to concatenate all of the articles'
text. The content would then be separated into distinct
sentences.

In the following phase, we'll look for vector
representations (word embeddings) for each sentence.

 The similarity between sentence vectors is then calculated
and stored in a matrix.

2. The similarity matrix is reworked into a

graph with sentences as vertices and similarity

scores as edges to determine the rank of the

sentence.

3. Finally, the final summary is made out of a

selection of top-ranked sentences.

V.IMPLEMENTATION OF THE TEXTRANK

ALGORITHM

In this article TextRank algorithm is used to create a clean
and succinct summary from a collection of scraped
articles. Please bear in mind that this is a single-domain-
multiple-documents summarising project, which means
we'll be using a variety of articles as input and creating a
single bullet-point summary.

Using Jupyter Notebook lets implement the TextRank
algorithm.

A. Import the necessary libraries

.

B. Examine the Information

Article id, article text, and source are the three columns in our
dataset. The 'article text' column has the text of the
articles, which is what we're most interested in. Let's print
a few of the variable's values to observe how they appear.

We now have two options: manually summarize each item or
construct a single summary for all articles. We’ll go with
the latter for our purposes.

C. Split Text into Sentences

 The material must now be broken down into distinct

sentences. To do so, we'll utilize the nltk library's sent

tokenize () method.

Proceedings of the National Conference on Emerging Computer Applications (NCECA)-2022 1
Vol.4, Issue.1

271

DOI: 10.5281/zenodo.6369622
ISBN: 978-93-5607-317-3 @2022 MCA, Amal Jyothi College of Engineering KanjiraKottayamppally,

Word embedding’s is a sort of vector representation of
words used in GloVe. These word embedding’s will be used
to vectorize our texts. We could have created features for our
sentences using the Bag-of-Words or TF-IDF techniques, but
these algorithms neglect the order of the words.

For our phrases, we'll need to make vectors. To arrive at
a consolidated vector for a phrase, we will first retrieve
vectors (each with 100 elements) for the component words in
the sentence, the mean/average of the vectors is then
calculated.

The next step is to find similarities between the sentences
and we do this using the cosine similarity approach. For this
task create an empty similarity matrix and fill it with cosine
similarities between the texts..

D. Applying PageRank Algorithm

Let's turn the similarity matrix sim mat into a graph before

moving on. The edges of this network will indicate the

similarity scores between the sentences, while the nodes will

represent the phrases. To arrive at the sentence ranks on this

network, we'll use the PageRank method.

To generate a summary, extract the top N sentences

depending on their rankings.

VI.CONCLUSIONS

With the advancement of the Internet, a vast quantity of

information is now available. Summarizing large quantities
of

text is extremely difficult for humans. In this age of
information overload, automated summarization systems are
in high demand. There is an information overload as a result
of the fast increase of knowledge and the usage of the
Internet.

This difficulty can be handled if there are reliable text
summarizers that provide a document summary for the user's
convenience. As a result, a system must be developed that
allows a user to quickly access and obtain a summary
document.

A summary of a document using extractive or abstractive
approaches is one such answer. Extractive text
summarization is simpler to construct.

In this work, we focused on extractive techniques for
automatic text summarising. We've gone through a handful
of the more common methods. It gives a good overview of
recent developments and advancements in automatic
summarization methods, as well as the most up-to-date
information in this field.

VII. REFERENCES

[1] Egyptian a informatics Journal, Extractic text summarization

using modifiedpagerankalgorithm,
https://www.sciencedirect.com/science/article/pii/S111086651
9301355

[2] Analytics Vidhya, An introduction to text summarization using
text rank algorithm(with python implementation),

 https://www.analyticsvidhya.com/blog/2018/11/introduction-text-
summarization-textrank-python/

[3] Data Science in your pocket, Text summarization using text
rankhttps://medium.com/data-science-in-your-pocket/text-
summarization-using-textrank-in-nlp-4bce52c5b390

[4] Opengenus, Text rank for text summarization,

 https://iq.opengenus.org/textrank-for-text-summarization/

[5] Research Gate, Graph-based text summarization using
modified text rank,

 https://www.researchgate.net/publication/327136473_Graph-
Based_Text_Summarization_Using_Modified_TextRank

