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Abstract— Automatic text summarization is a technique for 

producing a succinct and accurate summary. The machine 

learning algorithm may be trained to understand texts and 

identify the areas that contain key facts and information before 

constructing the required summary phrases. We are using the 

text rank-based Automatic Text Summarization in this study 

work to create quality summaries and keywords, which are 

essential for text summarization. The suggested summarizing 

system's performance is evaluated. 
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I.INTRODUCTION 

     Text Summarization is one of those Natural Language 
Processing (NLP) technologies that will undoubtedly have a 
significant impact on our daily lives. One of the most difficult 
and fascinating tasks in Natural Language Processing is 
automatic text summarization. It’s a method for extracting a 
brief and meaningful summary of text from a variety of 
sources, including books, news stories, blog posts, research 
papers, emails, and tweets. The availability of vast amount of 
textual data has sparked a surge in demand for automatic text 
summarizing systems. In this article text summarization is 
discussed and how to use the TextRank algorithm and how to 
put it into practice in python. 

II.APPROACHES TO TEXT SUMMARIZATION 

     Automatic text summarization has been a source of 
fascination since the 1950s. "The automated production of 
literary abstracts," a research paper by Hans Peter Luhn 
published in the late 1950s, used factors like word frequency 
to pick keywords from the text for summarising. 

     Another notable study, conducted by Harold P 
Edmundson in the late 1960s, extracted relevant sentences for 
text summary using approaches such as the existence of cue 
words, terms from the title occurring in the text, and sentence 
location. Many important and intriguing works on the topic 
of automatic text summarization have been published since 
then. 

The two most common types of text summary are 
extractive and abstractive summarization. 

Extractive Summarization: This approach works by 
extracting many components from a text, such as phrases and 
sentences, then stacking them together to generate a 
summary. As a result, finding the proper phrases for summary 
is critical in an extraction approach. 

To create a completely new summary, abstractive 
summarization employs advanced natural language 
processing algorithms. It's possible that some of the details in 
this summary aren't included in the original text. This study 
will concentrate on the technique of extractive 
summarization. 

III.PAGERANK ALGORITHM 

The PageRank algorithm provides a probability 
distribution that is used to predict whether a user will wind 
up on a given website after clicking on random links. Any 
number of documents can be used to compute PageRank. At 
the outset of the computational approach, some research 
articles assume that the distribution is evenly distributed 
throughout all documents in the collection. To update 
predicted PageRank values to more closely approximate the 
theoretical real value, the PageRank calculations require 
multiple runs over the collection, referred to as "iterations." 

Assume a four-page document containing the letters A, B, 
C, and D on each page. Links between pages are disregarded, 
as are outbound links from a single page to another single 
page. For all pages, PageRank is set to the same value. 
Because the entire number of pages on the web at the time 
was equal to the sum of PageRank across all pages in the 
original version of PageRank, in this case, each page would 
start with a value of one. The rest of this section, as well as 
later versions of PageRank, assumes that each page has a 
probability distribution between and, with 0.25 as the 
beginning value. 

On the next cycle, the PageRank sent from a specific page 
to the targets of its outbound links is split evenly across all 
outbound connections. If the system’s only connections to A 
were from pages B, C, and D each link would transmit 0.25 
PageRank to A on the following iteration, for a total of 0.75. 

              PR(A) = PR(B) + PR(C) +PR(D). 

Consider what would happen if page B was linked to 
pages C and A, page C to page A, and page D to all three 
sites. As a consequence, on the first repeat, page B would 
communicate half of its current value, or 0.125 to page A, and 
the other half, or 0.125, to page C. Because it had three 
outbound links, Page C's whole current value, 0.25, would be 
transferred to A's sole existing value, or roughly 0.083. At the 
end of this cycle, Page A will have a PageRank of around 
0.458, and the page it connects to, A. D, will transmit one-
third of its PageRank. 

                 PR(A) = PR(B)/2 + PR(C)/1 +PR(D)/3 
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To put it another way, the PageRank of an outgoing link is 
capable the PageRank score of the document divided by the 
quantity of outward-bound links L ( )       

            PR(A) = PR(B)/L(B) + PR(C)/L(C) + PR(D)/L(D) 

1.                                  

IV.TEXTRANK ALGORITHM 

Instead of pages, we employ phrases in the TextRank 
algorithm. The chance of a web page change is determined 
by the similarity of the two texts. The similarity scores are 
kept in a square matrix that resembles PageRank's. 

TextRank is an unsupervised extractive text summarising 
approach. The flow of the TextRank algorithm is : 

 

                    Fig 1: Flow of TextRank Algorithm 

The first step would be to concatenate all of the articles' 
text. The content would then be separated into distinct 
sentences. 

In the following phase, we'll look for vector 
representations (word embeddings) for each sentence. 

     The similarity between sentence vectors is then calculated 
and stored in a matrix. 

2. The similarity matrix is reworked into a 

graph with sentences as vertices and similarity 

scores as edges to determine the rank of the 

sentence. 

3. Finally, the final summary is made out of a 

selection of top-ranked sentences. 

V.IMPLEMENTATION OF THE TEXTRANK 

ALGORITHM 

In this article TextRank algorithm is used to create a clean 
and succinct summary from a collection of scraped 
articles. Please bear in mind that this is a single-domain-
multiple-documents summarising project, which means 
we'll be using a variety of articles as input and creating a 
single bullet-point summary. 

Using Jupyter Notebook lets implement the TextRank 
algorithm. 

 

A. Import the necessary libraries 

      

 

.  

B. Examine the Information 

 
 

Article id, article text, and source are the three columns in our 
dataset. The 'article text' column has the text of the 
articles, which is what we're most interested in. Let's print 
a few of the variable's values to observe how they appear. 

 

 

 

We now have two options: manually summarize each item or 
construct a single summary for all articles. We’ll go with 
the latter for our purposes. 

   

C. Split Text into Sentences 

     The material must now be broken down into distinct 

sentences. To do so, we'll utilize the nltk library's sent 

tokenize () method. 
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Word embedding’s is a sort of vector representation of 
words used in GloVe. These word embedding’s will be used 
to vectorize our texts. We could have created features for our 
sentences using the Bag-of-Words or TF-IDF techniques, but 
these algorithms neglect the order of the words. 

 

 

For our phrases, we'll need to make vectors. To arrive at 
a consolidated vector for a phrase, we will first retrieve 
vectors (each with 100 elements) for the component words in 
the sentence, the mean/average of the vectors is then 
calculated. 

The next step is to find similarities between the sentences 
and we do this using the cosine similarity approach. For this 
task create an empty similarity matrix and fill it with cosine 
similarities between the texts.. 

D. Applying PageRank Algorithm 

Let's turn the similarity matrix sim mat into a graph before 

moving on. The edges of this network will indicate the 

similarity scores between the sentences, while the nodes will 

represent the phrases. To arrive at the sentence ranks on this 

network, we'll use the PageRank method.

 
To generate a summary, extract the top N sentences 

depending on their rankings. 

 
 

 

 

 

VI.CONCLUSIONS 

 
With the advancement of the Internet, a vast quantity of 

information is now available. Summarizing large quantities 
of  

text is extremely difficult for humans. In this age of 
information overload, automated summarization systems are 
in high demand. There is an information overload as a result 
of the fast increase of knowledge and the usage of the 
Internet. 

This difficulty can be handled if there are reliable text 
summarizers that provide a document summary for the user's 
convenience. As a result, a system must be developed that 
allows a user to quickly access and obtain a summary 
document. 

A summary of a document using extractive or abstractive 
approaches is one such answer. Extractive text 
summarization is simpler to construct. 

In this work, we focused on extractive techniques for 
automatic text summarising. We've gone through a handful 
of the more common methods. It gives a good overview of 
recent developments and advancements in automatic 
summarization methods, as well as the most up-to-date 
information in this field. 
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